

Cold-start recommendations for
the user- and item-based recommender system

algorithm k-Nearest Neighbors

Cold start-rekommendationer för den användar- och objektbaserade

rekommendationsalgoritmen k-Nearest Neighbors

Robert Lorentz,
Oskar Ek

2017-05-12

Abstract

Recommender systems apply machine learning methods to solve the task of providing

appropriate suggestions to users in both static and dynamic environments. An example of this

is a movie service like Netflix that recommends movies to its users. Although many

algorithms have been proposed, making predictions for users with few ratings remains a

challenge in recommender systems.

In this study the performance of the algorithm k-NN, both user- and item-based, was

empirically evaluated. This was done using the MovieLens 1M and 100K datasets in

scenarios where the users have between 1 and 9 ratings, simulating cold-start scenarios of

various degree. The results were then compared with the accuracy of the algorithm in a

simulated normal case, to see how the cold-start affected the two algorithms, and which one

of them that handled it best.

In summary, this report shows that user-based k-NN performs better in relation to item-based

k-NN for new users having few rated items. Overall the accuracy improved as the number of

ratings increased for the new users for both user- and item-based k-NN.

1

Sammanfattning
Rekommendationssystem tillämpar maskininlärningsmetoder för att lösa uppgiften att

tillhandahålla lämpliga förslag till användare i både statiska och dynamiska miljöer. Ett

exempel på detta är en filmtjänst som Netflix som rekommenderar filmer till sina användare.

Även om många algoritmer har utvecklats för ändamålet, är det fortfarande en utmaning för

rekommendationssystem att göra förutsägelser för användare med få betyg.

I denna studie utvärderades algoritmen K-NN, både användar- och objektbaserad, empiriskt.

Detta gjordes med hjälp av MovieLens 1M och 100K dataset i scenarier där användarna har

mellan 1 och 9 betyg och simulerar cold start-scenarier av olika grad. Resultaten jämfördes

sedan med ett simulerat normalfall, för att se hur cold start påverkat de båda algoritmerna och

vilken av dem som hanterade det bäst.

Sammanfattningsvis visar denna rapport att användarbaserad k-NN fungerar bättre än

objektbaserad k-NN för nya användare med få betygsatta objekt. Sammantaget förbättrades

noggrannheten eftersom antalet betyg ökade för de nya användarna för både användar- och

objektbaserad k-NN.

2

Contents

1. Introduction 4
1.1 Purpose 4
1.2 Problem statement 5
1.3 Limitations 5

2. Background 6
2.1 Recommender system 6
2.2 Collaborative Filtering 6

2.2.1 Memory-based collaborative filtering 7
2.3 Cold start 7
2.5 Algorithms 7

2.5.1 User-based k-Nearest Neighbors 8
2.5.2 Item k-Nearest Neighbors 9

2.6 Hypothesis 9
2.7 Accuracy metric 10
2.8 Other related work 10
2.9 Explanation of terms 11

2.8.1 Training set 11
2.8.2 Test set 11
2.8.3 k-fold cross-validation 11

3. Method 12
3.1 Structure of the study 12
3.2 Dataset 13

3.2.1 MovieLens 13
3.3 Software 13

3.2.1 Python Surprise 13

4. Results 15
4.1 Normal case 15
4.2 Explicit rating and accuracy 16
4.3 Extremely cold-start (1-3 ratings) 18
4.4 Cold-start (4-9 ratings) 19

5. Discussion 20
5.1 Analysis of the results 20
5.2 Method criticism 20

6. Conclusions and future research 21

7. References 22

3

8. Attachments 24
8.1 100K MovieLens accuracy results 24

8.1.1 RMSE 24
8.1.2 MAE 24

8.2 1M MovieLens accuracy results 25
8.2.1 RMSE 25
8.2.2 MAE 25

8.3 Program code 26
8.3.1 Program to generate cold start training and test files (Java) 26
8.3.2 Program to test the algorithms under cold start (Python) 28
8.3.3 Program to test the algorithms under the normal case (Python) 29

4

1. Introduction
In today's society large amounts of data is available for the common person. An example of

this is Netflix, where there is a large diversity of movies to be watched.

An ongoing problem for the companies such as Netflix is to suggest the best suitable movies

for the user, so that the user wants to keep paying for their services. For this task one can use

a ​Recommender system ​[1].

A newly introduced user in a system may experience the issue of ​cold start, ​where the user

needs to leave some amount of ratings in order for the recommender system to leave accurate

suggestions. Cold-start is a famous problem in many ​neighborhood based collaborative

recommender systems, where the recommendations are based on the ratings of other ​similar

users. The problem exists for new users when the similarity to other users are hard to

calculate due to little or no known ratings [3].

The user may decide to leave the system if the predictions are not satisfying, which is a big

problem for recommender systems. A way of approaching the cold-start problem, is to have

the user ​explicitly ​rate an initial amount of items in order for the recommender system to

leave good predictions. In this study two version of the algorithm k-Nearest Neighbors will

be investigated, user-based and item-based, and how cold-start affects them [1]. This study

will also investigate how the number of explicit ratings a new user has left affects the

predictions in a simulated cold-start scenario.

1.1 Purpose

The purpose of this report is to examine the collaborative filtering algorithm user- and

item-based k-NN (k-Nearest Neighbors) and how well they perform with the cold-start

problem. Cold-start is a known issue for k-NN algorithms due to the lack of availability of

similar users when a user has few ratings [3].

Some applications collect information about users from social media and other sources,

forming a warm-start, which has been shown to increase accuracy [2].

Warm-start can also include interviewing the user and receiving explicit ratings to prevent the

5

cold-start scenario. This report investigates the evaluation performance of the user based

algorithm k-NN when the amount of ratings left by the user is increased in a cold-start

scenario.

1.2 Problem statement

● How does the recommender system algorithm user- based k-NN get affected

compared to the item- based k-NN in cold-start conditions?

● How does the number of explicit ratings made by new users influence the accuracy of
the algorithms in cold-start situations?

1.3 Limitations

This study will focus on the cold start scenario for the user- and item-based recommender

system algorithm k-NN (k-Nearest Neighbors) and how the number of explicit ratings users

make affects the accuracy of the recommender algorithm, this compared with the normal case

where the dataset is unchanged.

We will in this report only investigate explicit data out of ratings, in an offline static context,

and not a dynamic database where users can get inserted into the database at different times.

The datasets used for this study is MovieLens 1M, MovieLens 100K [8] and made available

from MovieLens free for education and studies.

The recommender system implementer Surprise [10] is used to operate the algorithms

mentioned above, with limitations to the algorithms and applications of the system.

6

2. Background

2.1 Recommender system

We begin clarifying what a recommender system is and the general definition. Recommender

systems in software engineering (RSSEs) aim to help users in their selections in systems

where large amounts of products exists.

RSSEs work by recommending items either ​implicitly​ or ​explicitly​ depending on the system.

The implicit approach infers to monitor user behaviour without the knowledge of the user,

and basing recommendations out of the reactions of incoming data. The ambition is to learn

from the data item presented to the user. With the explicit approach users are required to

actively specify preferences of items to the system, often by entering a value on 5-point or

7-point ​Thurston scales.​ Lower values commonly represents less appreciation of the product

while a higher values indicates the user’s liking of the product. The RSSE then examines this

information and suggests items [1].

Item recommendations can be categorized into two main groups, ​Content-based

recommendations​ and ​Collaborative filtering​. Content-based recommendations are based on

finding items that are similar to the ones that have already been liked ​by the individual user​.

The collaborative filtering system takes a more social approach, where other users are

considered.

2.2 Collaborative Filtering

Collaborative filtering involves suggesting items based on similarity calculations between

users and/or items [4].

The assumption for collaborative filtering is that similar users will like the same items (same

items will get liked if one user likes one of these). Collaborative filtering algorithms

measuring the distance between users and providing their predictions based on that are called

user-based​, while collaborative filtering algorithms measuring the distance between items are

called ​item-based.

7

2.2.1 Memory-based collaborative filtering

Memory-based algorithms applies the method of finding a set of users with statistical

techniques that trends to appreciate the same products, also known as ​neighbours.​ Once a set

of ​neighbours ​is calculated the RSSEs use different types of algorithms to associate

preferences of neighbours and predict the top-N recommendations for the user. This

technique is also known as ​nearest-neighbour.

2.3 Cold start

New users or inactive users not contributing enough ratings can suffer from the cold start

issue, where the collaborative filtering method has insufficient data to provide good

recommendations. This way, the accuracy error increases for cold-start scenarios for

collaborative filtering algorithms [3].

2.5 Algorithms

The algorithm focused on in this experiment is k-NN, which measures the distance between

nodes in a graph in respect to user or item similarities. The similarities for the

neighborhood-based implementations can be calculated with different metrics, this study will

use the ​Pearson correlation coefficient​. This is a widely and commonly used metric for

similarity measurements, used in earlier studies of k-NN benchmark analysis for movie

datasets [14][15].

This similarity formula calculates the similarity between user ​u ​and user ​v:

pearson_sim(​u,v​) =

(r − μ) · (r − μ)∑

i∈Iuv
ui

u vi v

 · √ (r − μ) ∑

i∈Iuv
ui u

2 √ (r − μ) ∑

i∈Iuv
vi v

2

where:

● - The items rated by both user ​u ​and user ​v​.Iuv
● - The rating given by user ​u ​to item ​i.rui

8

● - The rating given by user ​v ​to item ​i.rvi
● - ​The mean rating given by user ​u.μu
● - ​The mean rating given by user ​v.μv

This similarity formula calculates the similarity between the item ​i ​and the item ​j​:

pearson_sim(​i,j​) ​=

(r − μ) · (r − μ)∑

u∈Uij
ui

i uj j

 · √ (r − μ) ∑

u∈Uij
ui i

2 √ (r − μ) ∑

u∈Uij
uj j

2

where:
● - The users which have rated both item ​i ​and ​j​.U ij
● - The rating given by user ​u ​to item ​i.rui
● - ​The mean rating for item ​i.μi
● - ​The mean rating for item ​j.μj

2.5.1 User-based k-Nearest Neighbors

The memory-based algorithm k-Nearest Neighbour is one of the most popular CF approaches

to RSSEs. The basic strategy used by this algorithm is to measure a weight for the user’s

score by looking at votes by other k similar users. In this study, this algorithm will be referred

to as UserKNN.

The prediction for an item rating for a user is calculated with the following formula [9]:rui
︿

 r︿ui =
im(u,v) ∑

v∈N (u)
i
k

s

im(u,v) · r∑

v∈N (u)
i
k

s vi

where:

● - The k-neighborhood of users with respect to the user u.(u)N i
k

● - The similarity function explained above between user u and user v.im(u,)s v
● - The rating for item i given by user v.rvi

9

2.5.2 Item k-Nearest Neighbors

Another memory based neighbor algorithm, calculating similarity between items instead of

users in the graph. In this study, this algorithm will be referred to as ItemKNN. The rating

prediction for a user of an item is calculated by the following formula [9]:

 r︿ui =
im(i,j) ∑

j∈N (i)k
u

s

im(i,j) · r∑

j∈N (i)k
u

s uj

where:

● - The ​k-​neighborhood of items with respect to the item ​i.(i)N k
u

● - The similarity function explained above between item ​i ​and item ​j.im(i,)s j
● - The rating for item ​j ​given by user ​u.ruj

2.6 Accuracy metric

To measure the accuracy of a recommender system, there are two metrics that are commonly

used; the ​root-mean-squared-error​ (RMSE) and the ​mean absolute error​ (MAE). Accuracy

in this context means how well the predicted ratings matches the actual ratings of the model.

The RMSE is calculated using the following formula:

MSE(T) R = √ N

∑

(u,i)∈T
(r − r)︿

ui ui
2

The MAE is calculated using the formula:

AE(T) M = N

 r − r ∑

(u,i)∈T
|
︿

ui ui |

In the formulas above, T is the set of (user, item)-tuples that constitute the training set. isrui

the actual rating of the item i given by user u, and is the corresponding prediction (guess).r︿ui

The constant N is the amount of ratings in the set [12].

A difference between these two metrics is that the RMSE value will be more affected by

10

large errors in the prediction. This is because the errors for each item are squared in the

formula, giving large error a bigger impact on the final value. This makes RMSE more

suitable as a metric if large errors are of great importance.

2.7 Related work

The majority of previous research uses RMSE and MAE and measures the accuracy between

several RSSE algorithms in their respective dataset environment. This way the suggestions

made by the algorithms can be compared and evaluated, to determine which one is the best

performing [6][2][5].

Different approaches have been made to improve the performance for movie

recommendations in RSSE systems in cold-start scenarios. One of those is to use decision

trees with interview questions all depending on the answers of the previous questions. This

way more appropriate suggestions can be made with fewer questions [5]. Other approaches

include converting a cold-start user into a warm-start user by extracting information about the

user in social media [2].

Other related work benchmarks k-NN for the netflix dataset, receiving good predictions in

relation to other popular RSSEs for the movie dataset. The k-value used in their research was

equal to 100. [16]

2.8 Explanation of terms

In this section some terms and concepts that will be used in the report are explained.

2.8.1 Training set

A training set is the part of the dataset that the recommender system algorithm will use as
training data when being evaluated. This is the data that the rating predictions will be based
on.

11

2.8.2 Test set

This is the part of the dataset that will be used as measurement for the accuracy of the
algorithms. The accuracy will be determined by looking at how closely the predictions
resemble this actual set of data.

2.8.3 k-fold cross-validation

K-fold cross-validations​ is the act of dividing a dataset into ​k​ equally sized subsets and use
each of these subsets as the test set one time each, with the other subsets combined acting as
the training set. These ​k​ different setups will each generate an accuracy measurement, which
will be combined into a single result, usually by taking the mean [13].

2.9 Hypothesis

For the user-based algorithm k-NN the neighborhood with users, , will be of users(u)N i
k

which have rated similarly for the given movies the newly added user have explicitly rated.
The training set will include lots of users and ratings, thus the more explicit ratings given by a
new user, the better the performance accuracy one would assume. This is because more
ratings equals a better representation of taste for a user, which leads to the neighborhood

having users with a more probable similar taste, than one neighborhood based out of(u)N i
k

the taste of few movies rated by a new user. Therefore the performance accuracy should
increase as the amount of ratings increases.

For the item-based algorithm k-NN the neighborhood will be of items rated similarly(i)N k
u

by other users. These items in the neighborhood is rated by the new user, denoted by .ruj
For new users with few ratings, the neighborhood will consist of the few movies rated, thus
the algorithm has little data to predict from.
For the user-based k-NN, the algorithm can base the predictions for the other similar users’
product ratings, having more collaborative data to predict from.

Consequently the assumption is that the user-based k-NN will perform better in situations
where the new user has explicitly input few ratings. Both algorithms is assumed to perform
better in situations where the new user has more ratings since the neighborhoods calculated
(and) would have more data to base the predictions from.(u)N i

k (u)N i
k

12

3. Method

3.1 Structure of the study

This study tested the cold-start scenario, with a varying amount of initial items rated by the

cold start ​users; that is, the users that are assumed to be new to the system. This was done in

two steps.

Step one - building the cold-start simulation data:

The users of the dataset are partitioned into four equally sized sets, so each contains 25% of

the full set of users. Then the following procedure is performed for each of these sets, one

time each:

Let the users in the set represent the cold-start users, and the users of the other three sets

represent the non-cold-start users. For all the cold-start users, place ​n ​of their ratings in the

training set, whereas the rest are instead appended to the test set. For the non-cold-start users,

all of their ratings are added to the training set. This simulates the situation in which the

cold-start users has only provided ​n​ ratings, and the rest of their ratings should be predicted

by the algorithm.

Repeat this for different values of ​n​, ranging from 1 up to 9. The value 9 is chosen as a

maximum, due to earlier research partitioning similarly.

The reason why 0 is not included is because the implementation of the algorithms in use

would in that case only return a mean value of all the item’s ratings as a prediction. This is

not interesting since it does not demonstrate the cold start problem.

This first step is the responsibility of the program ColdStartGenerator, whose code is

included under Attachments, section 8.3.1.

Step two - testing the algorithms with the data:

Next, the two algorithms; user-based kNN and item-based kNN, are tested using the data

generated in the previous step. For each algorithm, the test is conducted as follows:

For each ​n​-value, the algorithm is trained and then tested using ​4-fold cross validation​. This

13

method has been used in previous research for similar purposes in similar datasets [5].

The algorithms are also tested in the ​normal case​ scenario, which means that 75% of the

ratings are used as training data, and 25% are used as test data. This is also conducted using

4-fold cross validation. The ​mean rating ​scenario is also tested since Surprise uses the mean

rating when predicting for a user with 0 ratings, and compared with the algorithms.

This second step is the responsibility of the two Python programs included under

Attachments, section 8.3.2 and 8.3.3.

Users having equal to or under 3 ratings will be assumed ​extremely cold-start users​, users in

the interval [4,9] will be assumed ​cold-start users. ​Same partitioning can be seen in other

research [7]. The difference in our case is that we do not consider the case of users with 0

ratings, so these are not included in our extremely cold-start users.

The neighborhood size, ​k​, is chosen to be 100 in this study. This value was used in other

similar research using k-NN algorithms in movie datasets and thus seemed most fitting for

our research [16]. The accuracy metrics RMSE and MAE were chosen to be evaluated due to

earlier research often using both of these accuracy metrics [6][2][5].

3.2 Dataset

3.2.1 MovieLens

For our dataset we are using MovieLens, a set of movie ratings made available by

GroupLens, a research lab at the university of Minnesota. We use two two sizes of it,

MovieLens 100K containing 100.000 ratings, and MovieLens 1M containing 1.000.000

ratings. The ratings are explicit containing user id, movie id, rating [1,5] and a time tag.

The different datasets on the website are free for research and education.

14

3.3 Software

3.2.1 Python Surprise

Python Surprise is developed and maintained by Nicolas Hug. Surprise is an easy to use

python library kit used to evaluate, analyze and compare the performance of RSSE

algorithms. It provides the user with ready to use RSSE algorithms, with support to develop

new algorithms [10].

For impossible rating predictions in Surprise, for example when a user does not have any

previous ratings, the predicted rating will be the mean of all the ratings for the specific item.

This is the case for both the UserKNN and ItemKNN implementations.

15

4. Results

This section includes the experimental results for our study beginning with graphs where

y-value stands for the accuracy and x-value for the number of ratings per user. Then, the

difference for the various intervals (​extremely cold-start ​and​ cold-start​) will be compared

with the normal case represented in percentage. A positive percentage in the results means

that the accuracy metric is less than the corresponding accuracy metric for the normal case. A

negative, in the same way, represents a higher value in accuracy.

4.1 Normal case

These results below are for the algorithms run on the dataset in the normal case scenario.

100k MovieLens UserKNN ItemKNN Mean rating

RMSE 1,0157 1,0401 1,1248

MAE 0,8059 0,8297 0,94439

Table 1: MovieLens 100K Normal case accuracy.

1M MovieLens UserKNN ItemKNN Mean rating

RMSE 0,9677 0,9884 1,11692

MAE 0,7707 0,7924 0,93374

Table 2: MovieLens 1M Normal case accuracy.

16

4.2 Explicit rating and accuracy

These results represent the results in accuracy measuring for the algorithms in relation to

amount of explicit ratings by the users.

Figure 1: MovieLens 100K, RMSE.

Figure 2: MovieLens 100K, MAE.

17

Figure 3: MovieLens 1M, RMSE.

Figure 4: MovieLens 1M, MAE.

As can be seen in the graph, as the amount of ratings for the algorithms increases, the

accuracy in relation to RMSE and MAE steadily improves. For ItemKNN the amount of

ratings 1-3 for RMSE and 1-6 for MAE gives higher RMSE for a user than using the mean

rating with respect to MovieLens 1M. Considering MovieLens 100K and the RMSE results,

the mean rating is a better way of predicting for all the ratings 1-9. By looking at the MAE

results, using the mean resulted in lower values for the first 4 ratings. The bigger dataset

received overall better predictions than the smaller dataset as can be seen in the graph.

Another observation is that for all the scenarios UserKNN performs better with higher

accuracy measurements both for RMSE and MAE, while simultaneously having lower MAE

and RMSE than using the mean rating for an item.

18

4.3 Extremely cold-start (1-3 ratings)

These results represents the accuracy in RMSE and MAE for users rating movies in≤ 3

relation to the normal case.

Figure 5: MovieLens 100k.

Figure 6: MovieLens 1M.

The increase in percentage for ItemKNN is very high compared to UserKNN, 8% and 11%

versus 25% and 30,5% with respect to RMSE. Between the datasets ItemKNN receives about

5% worse predictions for MovieLens 1M compared to MovieLens 100K considering RMSE.

UserKNN also performed worse with the larger dataset with 3% higher RMSE.

19

4.4 Cold-start (4-9 ratings)

These results are for users rating movies, where n is the number of explicit ratings.4 ≤ n ≤ 9

Figure 7: MovieLens 100k.

Figure 8: MovieLens 1M.

The observations here are that the increase in percentage is lower in relation to the extremely

cold-start situation, however the increase is still higher for ItemKNN than UserKNN.

UserKNN has a low increase here, 2,5% and 5% for the dataset with respect to RMSE, which

indicates that increasing the amount of ratings does not increase the accuracy significantly for

this algorithm in this study. The dataset MovieLens 100K received higher RMSE values in

20

this interval opposed to the extremely-cold start scenario where the dataset received lower

values.

5. Discussion

5.1 Analysis of the results
In this section the results will be discussed including method analysis.

Both ItemKNN and UserKNN are affected by the various simulated cold-start scenarios by

an increase in RMSE and MAE. ItemKNN is affected noticeably more than UserKNN in the

simulated scenarios, which confirms our hypothesis. UserKNN showed a more stable

increase in RMSE as the amount of ratings increased than ItemKNN relative to the normal

case. This indicates that UserKNN is more stable for extremely cold-start environments when

only considering the prediction quality.

Considering the difference of performance in accuracy between RMSE and MAE, you can

see that the RMSE values for UserKNN is lower than MAE while the relation is reversed for

ItemKNN with RMSE values higher than MAE.

As described in the background RMSE is affected more than MAE when large errors occurs.

The fact that RMSE gives higher values than MAE for ItemKNN while the reverse relation is

true for userKNN seems to suggest that ItemKNN suffers more from large errors. This is

probably due to the fact that the amount of similar items that the user has rated is generally

smaller than the amount of similar users which have rated the item. So the risk of not having

any neighbours that are particularly similar, is bigger for the ItemKNN algorithm. This could

naturally lead to a larger amount of very big errors.

One could assume that the algorithms would receive better quality in predictions in the larger

dataset due to the larger amount of ratings. However, when looking at the results and

comparing the algorithms to the normal case in the extremely-cold-start simulations (figures

5 and 6) it might look a little odd that the algorithms appear to be performing better on the

smaller 100K dataset than the 1M dataset.

We believe that the reason for this is that the accuracy in the normal case is significantly

21

better for the larger dataset than the smaller one, for both algorithms. So in the

extremely-cold-start scenario, where the accuracy is quite poor in both the small and large

dataset, the difference to the normal case is relatively higher for the larger dataset. Keep in

mind that this ​does not ​ mean that the accuracy of the algorithms are worse on the larger

dataset, it just means that they have a relatively higher difference to the normal case.

By using the mean for 1-6 ratings in MovieLens 1M, and 1-9 for MovieLens 100K both

considering RMSE, the prediction accuracy was better. In the Surprise implementation this

illustrates that the mean rating for an item is a superior way of predicting a movie than letting

the algorithm ItemKNN predict the rating for a new user giving between these explicit

ratings. UserKNN showed having a stable increase, predicting better than both ItemKNN and

by using the mean rating.

5.2 Method criticism
In this research Surprise was used to perform the various algorithms. This limits all the

results to their algorithm implementation, which could be different in other recommender

system programs.

Another constraint is the dataset used. This study only focused on the dataset provided by

MovieLens. A further approach would be to look at other datasets to see if the accuracy

varies further than in this research.

22

6. Conclusions and future research
Recommender systems are a leading measure of predicting user behaviour in systems with

extensive amount of information. The systems provide the applications in which they are

used with valuable suggestions towards customers, increasing profit by the business. It helps

the customer by contributing relevant products while simultaneously generating proceeds for

the respective company. The system also needs to provide the newly added users with

sufficient suggestions such that the user feel satisfied with the suggestions. One way of

increasing the prediction accuracy is to urge the user to rate a number of movies, increasing

the accuracy of the suggestions.

This study shows that UserKNN is a better performing algorithm than ItemKNN under

cold-start conditions. It is also shown that both versions of the k-NN algorithm has a

significant decrease in accuracy when cold-start is introduced. This is consistent with

previous research as well as our assumptions based on the theory.

Increasing the number of initial ratings by cold-start users had a positive effect on the

accuracy of the algorithm. This was shown to be the case both for UserKNN and ItemKNN.

Future research could consist of investigating the effect in cold-start scenarios for other item-

and user-based algorithms and compare them. Improvements for ItemKNN could consist of

using the mean rating for users with few ratings, which could be looked into. Future research

could also include experimenting with other k values and investigate whether the result

differs.

One thing to look into is whether various parameters such as gender, age or profession have

an impact on the accuracy of the algorithms in a cold-start scenario. If, for example, children

needs to explicitly rate fewer movies than older people to achieve good predictions.

23

7. References
[1] Lampropoulos AS, Tsihrintzis GA. Machine Learning Paradigms: Applications in
Recommender Systems [Internet]. New York, USA: Springer International Publishing; 2015.
[quoted 23 April 2017].

[2] CHAMSI ABU QUBA Rana, HASSAS Salima, FAYYAD Usama, CHAMSI Hammam,
From a “Cold” to a “Warm” Start in Recommender systems
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6927067
[quoted 1 May 2017].

[3] Mi Zhang, Jie Tang, Xuchen Zhang, Xiangyang Xue
Addressing Cold Start in Recommender Systems: A Semi-supervised Co-training Algorithm,
2014. Gold Coast, Queensland, Australia.
[quoted 27 April 2017].

[4] Rajaraman A, Ullman JD. Mining of massive datasets. New York, USA: Cambridge
University Press; 2012
[quoted 12 May 2017].

[5] Hongyuan Zha, Shuang-Hong Yang, Ke Zhou, 2011, Beijing, China.
Functional Matrix Factorizations for Cold-Start Recommendation.
[quoted 3 March 2017].

[6] [Conference] Combining Memory-Based and Model-Based Collaborative Filtering in
Recommender System, Circuits, Communications and Systems, 2009. PACCS '09.
Pacific-Asia Conference. IEEE. Collected from:
http://ieeexplore.ieee.org/document/5232419/?part=1
[quoted 12 May 2017].

[7] Hong Cheng, Xiao Wen, Yu Rong. 2014, Seoul, Korea
A Monte Carlo Algorithm for Cold Start Recommendation
http://wwwconference.org/proceedings/www2014/proceedings/p327.pdf
[quoted 15 Aril 2017].

[8] MovieLens [Internet]. Minnesota: GroupLens, University of Minnesota; 2003​. [quoted 16
februari 2016]. Collected from: ​http://grouplens.org/datasets/movielens/

[9] [Internet] Surprise, 2015, basic k-NN.
http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knn
s.KNNBasic
[quoted 12 Mars 2017].

[10] Surprise. Surprise: A python library for Recommender Systems, ver. 1.0.2 [Program].
Publisher:Nicolas Hug. Licensed with BSD 3-clause license. [quoted 23 april 2017].
Collected from: ​https://github.com/NicolasHug/Surprise

[11] [Internet] Surprise, 2015, ​http://surprise.readthedocs.io/en/stable/similarities.html
[quoted 13 Mars 2017].

24

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6927067
http://ieeexplore.ieee.org/document/5232419/?part=1
http://wwwconference.org/proceedings/www2014/proceedings/p327.pdf
http://grouplens.org/datasets/movielens/
http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBasic
http://surprise.readthedocs.io/en/stable/knn_inspired.html#surprise.prediction_algorithms.knns.KNNBasic
https://github.com/NicolasHug/Surprise
http://surprise.readthedocs.io/en/stable/similarities.html

[12] ​Martin P. Robillard, Walid Maalej, Robert J Walker, Thomas Zimmermann.
Recommendation Systems in Software Engineering. 2014
[quoted 9 May 2017].

[13] Yoshua Bengio, Yves Grandvalet. No Unbiased Estimator of the Variance of K-Fold
Cross-Validation. 2004
[quoted 1 May 2017].

[14] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001, HongKong
Item-Based Collaborative Filtering Recommendation Algorithms.
[quoted 12 May 2017].

[15] Yehuda Koren. 2008. Las Vegas, Nevada. USA.
Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model.
[quoted 12 May 2017].
[16] Ted Hong, Dimitris Tsamis Stanford University. Unknown year.
Use of KNN for the Netflix Prize.
[Collected from:] ​http://cs229.stanford.edu/proj2006/HongTsamis-KNNForNetflix.pdf
[quoted 12 May 2017].

25

http://cs229.stanford.edu/proj2006/HongTsamis-KNNForNetflix.pdf

8. Attachments

8.1 100K MovieLens accuracy results

8.1.1 RMSE

#Ratings itemKNN userKNN

1 1,3542 1,1212

2 1,3129 1,0982

3 1,2740 1,0887

4 1,2400 1,0793

5 1,2068 1,0680

6 1,1789 1,0597

7 1,1603 1,0555

8 1,1457 1,0514

9 1,1322 1,0475

8.1.2 MAE

#Ratings itemKNN userKNN

1 1,0360 0,9444

2 1,0040 0,9107

3 0,9807 0,8867

4 0,9638 0,8663

5 0,9443 0,8514

6 0,9241 0,8431

7 0,9125 0,8389

8 0,9028 0,8359

9 0,8927 0,8330

26

8.2 1M MovieLens accuracy results

8.2.1 RMSE

#Ratings ItemKNN UserKNN

1 1,3747 1,1172

2 1,2882 1,0709

3 1,2231 1,0324

4 1,1780 1,0141

5 1,1455 0,9952

6 1,1239 0,9900

7 1,1067 0,9880

8 1,0924 0,9851

9 1,0814 0,9820

8.2.2 MAE

#Ratings itemKNN userKNN

1 1,0315 0,9339

2 0,9856 0,8652

3 0,9484 0,8272

4 0,9194 0,8107

5 0,8973 0,7947

6 0,8826 0,7907

7 0,8702 0,7877

8 0,8602 0,7855

9 0,8531 0,7840

27

8.3 Program code

8.3.1 Program to generate cold start training and test files (Java)

import​ java.io.*;
import​ java.nio.file.Files;
import​ java.nio.file.Paths;
import​ java.util.*;
import​ java.util.stream.Collectors;
import​ java.util.stream.Stream;

class​ ​RatingEntry​ {
 ​int​ userId;
 ​int​ itemId;
 ​double​ rating;
 String rowString;

 RatingEntry(String row) {

 ​this​.rowString = row;
 String[] parts = row.split(​"::"​);
 ​this​.userId = Integer.parseInt(parts[​0​]);
 ​this​.itemId = Integer.parseInt(parts[​1​]);
 ​this​.rating = Double.parseDouble(parts[​2​]);
 }

}

class​ ​User​ {
 ​int​ id;
 List<RatingEntry> ratingEntries = ​new​ ArrayList<>();

 User(​int​ id, List<RatingEntry> ratingEntries) {
 ​this​.id = id;
 ​this​.ratingEntries = ratingEntries;
 }

}

class​ ​Tuple​<​T, U​> {
 T first; U second;

 Tuple(T fst, U snd) { ​this​.first = fst; ​this​.second = snd; }
}

/**

 * Program to generate training and test files that simulates the cold start

problem.

 * Created by oskarek on 2017-05-02.

 */

public​ ​class​ ​ColdStartGenerator​ {
 ​public​ ​static​ ​void​ ​main​(String[] args) {
 ArrayList<User> users = usersFromDataFile(​"/ml-1m/ratings.dat"​);

28

 createTrainingAndTestFiles(users, ​4​);
 }

 ​/** Get a list of users from a ratings file. */
 ​static​ ArrayList<User> ​usersFromDataFile​(String path) {
 ​try​ (Stream<String> lines = Files.lines(Paths.get(path))) {
 ArrayList<User> users = lines

 .map(RatingEntry::​new​)
 .sorted((entry1, entry2) -> entry2.userId - entry1.userId)

 .collect(Collectors.groupingBy(entry -> entry.userId))

 .entrySet().stream()

 .map(entry -> ​new​ User(entry.getKey(), entry.getValue()))
 .collect(Collectors.toCollection(ArrayList::​new​));
 Collections.shuffle(users);

 ​return ​users;
 } ​catch​ (IOException e) {
 e.printStackTrace();

 ​return​ ​null​;
 }

 }

 ​/** Create the training and test files given a list of users, and a given
number of folds to perform */

 ​static​ ​void​ ​createTrainingAndTestFiles​(ArrayList<User> users, ​int​ nFolds) {
 ​int​ userCount = users.size(), testSize = userCount/nFolds;
 ​for​ (​int​ fold = ​0​; fold < nFolds; fold++) {
 ​int​ testStart = fold * testSize, testEnd = testStart + testSize;
 ​for​ (​int​ n = ​0​; n <= ​9​; n++) {
 File training_file = ​new​ File(​"fold"​ + (fold+​1​) + ​"/training_"​ + n +
"_ratings.txt"​);
 File test_file = ​new​ File(​"fold"​ + (fold+​1​) + ​"/test_"​ + n +
"_ratings.txt"​);
 training_file.getParentFile().mkdirs();

 test_file.getParentFile().mkdirs();

 ​try​ (PrintWriter training_pw = ​new​ PrintWriter(​new
FileWriter(training_file));

 PrintWriter test_pw = ​new​ PrintWriter(​new​ FileWriter(test_file))) {
 ​for​ (​int​ i = ​0​; i < userCount; i++) {
 List<RatingEntry> entries = users.get(i).ratingEntries;

 ​if​ (i >= testStart && i < testEnd) {
 Tuple<List<RatingEntry>, List<RatingEntry>> splitEntries =

splitList(entries, n);

 splitEntries.first.forEach(entry ->

training_pw.write(entry.rowString+​"\n"​));
 splitEntries.second.forEach(entry ->

test_pw.write(entry.rowString+​"\n"​));
 } ​else​ {
 entries.forEach(entry -> training_pw.write(entry.rowString+​"\n"​));
 }

 }

29

 } ​catch​ (IOException e) {
 e.printStackTrace();

 ​return​;
 }

 }

 }

 }

 ​/** Split a list in two at a given index */
 ​private​ ​static​ <T> Tuple<List<T>, List<T>> splitList(List<T> list, ​int
splitIndex) {

 List<T> first = list.subList(​0​, splitIndex);
 List<T> second = list.subList(splitIndex, list.size());

 ​return​ ​new​ Tuple<>(first, second);
 }

}

8.3.2 Program to test the algorithms under cold start (Python)

from​ surprise ​import​ KNNBasic
from​ surprise ​import​ Dataset, Reader
from​ surprise.accuracy ​import​ rmse, mae

Open the files to print the results to

rmse_file = open(​'rmse.txt'​, ​'w'​, ​1​)
mae_file = open(​'mae.txt'​, ​'w'​, ​1​)

reader = Reader(line_format=​'user item rating timestamp'​, sep=​'::'​)

for​ n ​in​ range(​0​,​10​):
 folds_files = []

 ​for​ fold ​in​ range(​1​,​5​):
 train_file = ​'fold'​+str(fold)+​'/training_'​+str(n)+​'_ratings.txt'
 test_file = ​'fold'​+str(fold)+​'/test_'​+str(n)+​'_ratings.txt'
 folds_files.append((train_file, test_file))

 ​# Load the dataset
 data = Dataset.load_from_folds(folds_files, reader=reader)

 ​# Build an algorithm, and train it.
 algo = KNNBasic(sim_options={​'name'​:​'pearson'​,​ 'user_based'​:​False​})

 ​# Evaluate performances of the algorithm in terms of RMSE and MAE,
 # and print the results to the corresponding files.

 rmseValues = []

 maeValues = []

 ​for​ trainset, testset ​in​ data.folds():
 algo.train(trainset)

 predictions = algo.test(testset)

30

 rmseValues.append(rmse(predictions))

 maeValues.append(mae(predictions))

 # Print average values to file

 avgRMSE = sum(rmseValues)/len(rmseValues)

 rmse_file.write(str(avgRMSE) + ​'\n'​)
 avgMAE = sum(maeValues)/len(maeValues)

 mae_file.write(str(avgMAE) + ​'\n'​)

8.3.3 Program to test the algorithms under the normal case (Python)

from​ surprise ​import​ KNNBasic
from​ surprise ​import​ Dataset, Reader
from​ surprise ​import​ evaluate, print_perf

reader = Reader(line_format=​'user item rating timestamp'​, sep=​'::'​)

Load the dataset​ ​and split it into 4 folds for cross-validation.
data = Dataset.load_from_file(​'/ml-1m/ratings.dat'​, reader=reader)
data.split(n_folds=​4​)

Build an algorithm, and train it.

algo = KNNBasic(sim_options={​'name'​:​'pearson'​,​ 'user_based'​:​False​})

Evaluate performances of our algorithm on the dataset; RMSE and MAE.

perf = evaluate(algo, data, measures=[​'RMSE'​, ​'MAE'​])

print_perf(perf)

31

